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N U M E R I C A L  M O D E L  O F  T H E  A S P I R A T I O N  S Y S T E M  

OF AN I N T E R N A L  C O M B U S T I O N  E N G I N E  

B. P. Kolobov ,  ~ P. P. Kolobov,  and V. N.  Shepelenko UDC 519.62, 533.6.01,621.43.013 

A physicomathematical model of flow in the aspiration system of an internal combustion engine 
operating in a "cold" regime, i.e., for a prescribed motion of the crankshaft, has been constructed. 
An ideal single-species gas is used. Results of a series of calculations for a time interval of five 
operation cycles are presented. 

1. A gas-dynamic model and a calculation algorithm for the aspiration system of a four-cycle piston 
internal combustion engine is proposed. The aspiration system (Fig. 1) is a combination of four channels 3 
that go out from a volumetric unit 2 and shut-off valves 4 that  control gas overflow to cylinders 5. A throttle 
valve 1 ensures contact between the volumetric unit and the power source. 

The gas motion in the system is calculated using the one-dimensional channel flow equations with 
friction and heat exchange on the walls, and the laws of mass and energy conservation in the volumetric unit. 
The pressure and temperature  of the gas in the cylinders and at the entrance to the system are assumed to 
be known. This problem was previously considered with some simplifications [1-5]. The formulation and the 
methods of solution of similar problems were studied [6-9]. 

2. A system of equations that  describe a one-dimensional unsteady flow of a perfect gas in a channel 
with friction and heat exchange on the walls is transformed to the form 

OW OW 
Ot +A"-~'z = / ;  

where 

P = pRT, 

(2.1) 

(2.2) 

U RT/P  0 I 
W - I U ,  P, TIt; f--If l , f2,f3[t;  A = 7 P  U 0 ; 

( 7 -  1)T 0 U 
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T ( 8 ) II O ln F 
fs = (7 - 1) ff qo + pIUI 3 ~ - (7 - I)TU ; az 

x is the coordinate along the channel axis; F and II are the area and the perimeter of the channel cross section; 
U, P,  T, and p are the velocity, pressure, temperature, and density of the gas; q0 is the heat flux through the 
side surface of the channel; ~ is the skin friction coefficient; 7 = Cp/Cv, Cp = 7R/(7 - 1), Cv = R/(7 - 1), 
Cp and Cv are the heat capacities of the gas at constant pressure and volume, and R is the gas constant. 
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Fig. 1 

To calculate the skin friction coefficient, we choose the implicit Colebrook-White approximation [10] 

(A *(Re, A/D) + 1/Re for Re >/100, 
A = A*(IOO, A/D) + I /Re for Re < 100, 

( 2.51 A -2 A -2 
A*=[21og  kRe ~Vt~-;;+3.---~)] , A**= [1.8log (~e----+l---6-~) ] 

Here A is the height of the channel wall roughness, D = 4F/H is the hydraulic diameter of the channel, 
Re = D[UIp/# is the Reynolds number, and # is the viscosity of the gas. The usual air with a temperature 
of 200C was used as a test gas. In this case, we have #(T) = 1.484623. IO-6(TSD/(T + 117)) kg/(m �9 sec), 
R = 287.18 m2/(sec 2- deg), and 7 = 1.369 [10-12]. 

The system of equations (2.1) is hyperbolic, and initial and boundary conditions should be imposed. 
The number of boundary conditions depends on the sign of the eigenvalues of the matrix A: 

At=U-C, A s = U + C ,  As=U. 

Here C = ~ is the speed of sound. In the present paper we consider only subsonic flows, i.e., the case 
IU I < C. Thus, it is mandatory to impose one boundary condition at the left end of the channel where A2 > 0 
and one boundary condition at the right end of the channel where A1 < 0. For the problem considered, it is 
more convenient to impose the boundary conditions for pressure. The boundary conditions for temperature 
are determined by the sign of the eigenvalue of As = U: if U(0, t , )  > 0, then T(0, t , )  is assumed equal to 
the gas temperature in the volumetric unit; if U(L, tn) < 0, where L is the channel length, then T(L,t ,)  
is assumed equal to the gas temperature in the cylinder. Otherwise, the temperature at the channel ends 
is determined from additional conditions. Depending on the behavior of the solution, the total number of 
boundary conditions for each channel can vary from two to four. These conditions have the form of nonlinear 
equations. 

3. The channel flow is calculated using an explicit Lax-Wendroff difference scheme [13-16] which has 
the second order of accuracy in internal nodes of the grid: 

Wr~+ID ,z 
i + m  - W;+m OW '+m 

+ A(Whl/2) - -  = f(Whl/2); r"/2 Ox 

OW~'+ll 2 w i  '+1 - w ?  _ + �9 

(3.1) 

(3.2) 

The grid is uniform in the z direction with the number of nodes N, the temporal grid t is calculated from 
the formula t "+1 = t" + r" ,  and the value of r" is determined from the stability condition r"z/h <~ a < 1 
(a = const), where z = max([Wi~+l[ + C~ +1). In contrast to the traditional difference scheme, the quantities 

W~+1/2, OW~+l/2/Oz in (3.1) and W~ +1/2, OW~+l/2/i)z in (3.2) are calculated using cubic splines of the class 
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C 1 [17] that are constructed on grids {xi}~ and {Xi+l/2 = 0.5(xi + xi+l)}ff -1, respectively. 
Approximation of the boundary conditions is performed following the pseudo-Green variant of the 

finite-element method [18]. The essence of this method is as follows. We consider a finite element DI~ = 
{xl ~< x ~< z2, t n ~< t ~< t '*+1} on the left boundary of the integration domain. By transforming the coordinates 
Y: = ( x  - -  X l ) / ( x 2  - -  Xl), t = ( t  - -  t n ) / r  n we transform it to a unit square b l ~  = {0 ~< ~ ~< 1, 0 < t • 1} (the 
bars over the local variables ~ and t are omitted in what follows). According to [18], the solution of system 
(2.1) in the domain/~1~ can be represented as 

V ( x , t )  = U~+lt 2 + U~(1 - x)  + V ~ ( z  - t 2) + alx(1 - x)  + a2(t - t 2) + az (x t  - t2); (3.3) 

P ( x , t )  = P~+lt2 + P~(1 - x - t 2) + P~x + blx(1 - z) + bz(t - t 2) + bsxt.  (3.4) 

The temperature T ( x ,  t) is written as P ( x ,  t), the coefficients c I being substituted for b/ (j  = 1, 2, 3) for 
U~ +1 > 0 and as U ( x , t ) ,  the coefficients c i being substituted for a i (j = 1, 2, 3) for U~ +x ~< 0. The sign of 
U~ +1 is determined in the course of solving the problem. 

To find arbitrary constants ai, b/, and c i (j = 1, 2, 3) the solution of (3.3), (3.4), and T ( x ,  t) should 
satisfy the system of equations (2.1) in the following collocation nodes of a boundary element: 

(0.5, 0.21132485), (0.9082483, 0.78867515), (0.0917517, 0.78867515). (3.5) 

We obtain a system of nine linear algebraic equations. We expand the right-hand side of this system in terms 
of p~+l and T~ +1 and seek the solution of the system in the form of an expansion in terms of the same 
quantities: 

~_ Dn+l-1 .1. ,'pn+l_2 a 3  
aj " 1 ~'j + ~1 ui + 

b i = P~+lb} + T~+lb~ q- b s, j = 1, 2, 3. (3.6) 

As a result of the solution of three independentsystems for the groups of coefficients {a}, b}, c}}, 
{aj, b~ ,~} ,z  2 and {a~,b~,c~}, i = 1, 2, 3, we obtain the following expressions for the boundary values of 
velocity and temperature at the left boundary of the integration domain: 

+1 + + - 

for U~ +~ > 0 (the value of T~ +~ is known, it equals the gas temperature in the volumetric unit) and 

U~ +1 - - a l p ~  +1 q- U~ +1 q- U~ - U~ - a 3, T~ +1 = -c~P~ +' + T~ +1 + T~ - T~ - c a 

for U~ '+1 ~< 0. 
The boundary conditions at the right boundary of the integration domain are determined in a similar 

manner. By means of a local transformation of the coordinates, the finite element D N  n = {zN-1 ~< z ~< z~v, 
t'* <~ t <. t '~+1 } is transformed to a unit square D N  n = {0 ~ z <~ 1, 0 ~< t ~< 1}, and the solution of the 
system of equations (2.1) is written as 

U(z,t) = U~+~t 2 + g~_1(l - x - t 2) + U~x + alZ(1 -- ~) ~- a2(t -- t 2) -[- a3xt; (3.7) 

P ( x , t )  = P~+lt2  + P~_I(1 - x) + P~(z  - t 2) + blx(1 - x)  + b2(t - t 2) + bs(xt  - t2). (3.8) 

The temperature T ( z , t )  is written as U ( z , t ) ,  the coefficients c i being substituted for a i (j = 1, 2, 3) for 
U~ +~ >1 0 and as P ( x ,  t),  the coefficients c/ being substituted for b i (j = 1, 2, 3) for U~ +1 < 0. The sign of 
U~, +1 is again determined in the course of solving the problem. 

We require that functions (3.7), (3.8), and T(z, t) satisfy the system of equations (2.1) in collocation 
nodes (3.5) of the right boundary dement.  As previously, we obtain a system of nine linear algebraic equations 
for the coefficients ai,  bi, and c i (j = 1, 2, 3). We represent these coefficients as expansions (3.6) with the 
quantities P~+X and T~ +~ substituted for P~'+~ and T~ +~. After the corresponding systems of linear algebraic 
equations are solved for the coefficients a~, b~, c~, and I (j = 1, 2, 3), the boundary conditions on the right 
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boundary of the integration domain take the form 

v~  +I = aIP~+' + u~tA - V~_l + v~  + ~], T~ +' = ~P~+'  + T~+i - T~_, + T~ + ~] 
for U~ +1 >/0 and 

g ~  +~ = o~P~+~ + ~]T~ +' + V~+_~ - V~_, + V~ + o] 
for U~ +1 ~< 0 (the value of T~ +~ is known, it equals the gas temperature in the cylinder). 

To solve the problem as a whole, we should also take into account the laws of mass and energy 
conservation in the volumetric unit. 

4. We use the following notation: (U0, P0, To, and p0) and (U~, P~, T~, and p~), (U~v , P~, T~, and P~v) 
are the velocity, pressure, temperature, and density of the gas at the entrance to the aspiration system and at 
the end of the kth channel (k = 1, 2, 3, 4); P, T, and p are the pressure, temperature, and density of the gas 
in the volumetric unit; Pk and Tk are the pressure and temperature of the gas in the kth cylinder; F0 and F~, 
F/~ are the cross-section areas at the entrance to the aspiration system and at the ends of the kth channel; 
II~ and II~v are the cross-section perimeters at the ends of the kth channel; Go = poUoFo and G~ = ~krrk r.k 

~ ' 1 ~ 1  ~ 1 , 

G~ = p ~ U ~ F ~  are the mass flow rates at the entrance to the aspiration system and at the ends of the kth 
channel; Co is the coefficient of resistance of the throttle valve; Ca, C~, and C~ are the coefficients of local 
resistance of the transitions between the throttle valve and the volumetric unit, the volumetric unit and the 
beginning of the kth channel, and through the valve of the kth channel. 

The equations of mass and energy conservation in the volumetric unit are 

V 
d ( P ) =  ~_,PlU{F~; (4.1) - ~  p o U o F o -  k ~ k 

k 

( : )  ( " (U,  ) '~ k. ,~ ,.J, 
7 - X dt = C.To + -~- poUoFo- ~ C.T~ + - - - ~ ) p x u i  r x . (4.2) 

k 

They should be supplemented by the conditions of pressure difference in the gas at the entrance to the system 
[19] 

Po - P = aolUolUo + boUo (4.3) 

and the conditions of pressure difference at the transitions between the volumetric unit and the entrance to 
the kth channel 

p p~ k k k ~ k 
- =alIU~[U ~ +blU~,  k = 1 , 2 , 3 , 4 ,  (4.4) 

and between the kth channel and the kth cylinder 

PI~ - Pk = a~lU~vlU~v + b~U~r k = 1, 2, 3, 4. (4.5) 

For the temperature and velocity at the channel ends we have 

1 k=1,2,3,4;  (4.6) if ut>0, 
T ~ = / ~ T + ( 1 - f l ~ ) T ~  '+l'k, U~=U~ '+l'k, /3~= 0 if U ~ < 0 ,  

-~p ] -{-(I - fl~v)T~ § U/~ = U~v § 
(4.7) 

1 if U~ >0 ,  
= k = 1, 2, 3, 4. 

B~ 0 if U~v~<O, 

The coefficients in these relations.are determined as [19] 

ao (Co -t- Ca)p/2, akl k k C#pl/2 , a~ ~ k = = = C.rPN/2 , 

II~#(T~) 7r ,(T0) b~ = II~#(Tt) b~v = 
bo = 4 ' S F t  ' sF~ 
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TABLE 1 

Range 

0 ~< z ~< 0.25 
0.25 < z ~< 0.5 
0.5 < z ~ 0.75 
0.75 < z ~< 1 

I~UlUl~ 

3.1 �9 1 0  - 2  

2.0.10 -3 
2.3.10 -3 
1.1 �9 10 -3 

IAP/PI,,~= 

1.4- 10 -4 
2.1 �9 1 0  - 4  

1.1 �9 1 0  - 4  

4.7.10 -s  

IAT/TI~,,  

4.2- i0 -s 
5.7- i0 -s 
3.1 �9 i0 -s 
1.3. I0 -s 

The values of P0, To, Pk, and Tk in relations (4.1)-(4.7) are known. Unknown quantities are U0, P, T, 
UI t, P~, TI t, U~, P/~, and T~ (k = I, 2, 3, 4). Using equalities (4.3) and (4.4) we can cancel the five unknowns 
Uo and U~: 

a0 = ~/b0 + 4a01P0 - PI, U0 = 2(P0 - P)/(#o + bo), 

a~ = ~/(b~)2 + 4atllp _ P~I, U~ = 2 ( e  - Plk)/Ca~ + b[), k = 1, 2, 3, 4. 

Using the Newton method,  we find the remaining twenty-two unknowns from Eqs. (4.1) and (4.2), equalities 
(4.6), and the relations 

2(P- e~) _ U~+,,t ' k = 1, 2, 3, 4. 
+ bt 

Equations (4.1) and (4.2) are replaced by difference analogs. The density that enters these equations is 
expressed in terms of pressure and temperature in accordance with the equation of state (2.2). 

The test case was chosen to be an unsteady isentropic flow in a constant-are~ channel in the absence of 
friction and heat exchange (the Riemann rarefaction wave). The calculations were performed for the following 
initial data: L -- 1 m, D = 0.05 m, R = 287.18 m2/(sec 2 .  deg), q = 1.369, U0 = 1 m/sec,  To = 1273 K, 
P0 = 3.6558014 �9 105 Pa, Co = 707.4455 m]sec, to = -5.13389 �9 10 -3 sec, and 0 ~< t ~< 1.9238159 �9 10 -3 sec. 

The calculation results obtained on a uniform grid are listed in Table 1, where AU,  A P ,  and AT 
indicate the differences between the calculated and exact values of velocity, pressure, and temperature.  

5. The processes in the aspiration system of a UZAM 3417 engine were calculated using the above 
algorithm. The system had the following numerical characteristics: the volume of the volumetric unit V = 
5.4294.10 -4 m 3, the channel lengths 11 = 14 = 0.193 m and lz = Is = 0.106 m, the channel diameters 
dl = d2 = ds = d4 = 0.034 m, the throttle valve diameter D2 = 0.0405 m, and the rotational speed 
nl = 845 rpm and n2 = 2667 rpm. The dependence of the coefficient of resistance of the throt t le  valve Ca 
on the angle of its turning and the dependences of the coefficients of resistance of the transitions between 
the channel and the cylinders C~ and the pressure in the cylinders on the crankshaft rotation angle were 
prescribed in a tabular form. The tabular data were obtained from experiments conducted at the Institute 
of Theoretical and Applied Mechanics of Siberian Division of the Russian Academy of Sciences by the team 
of V. K. Baev and V. V. Shumskii. The calculation was performed on a time interval of five operation cycles 
of the engine. A calculation with the Courant number equal to 0.7 and the number of nodes in the channels 
equal to 21 and 41 required about 30,000 time steps. The initial state of the gas was assumed to be an a 
priori calculated steady state that  corresponds to a fully open valve of the first cylinder, the remaining valves 
being closed. The calculation results for the flow rate of the gas through each cylinder (valve) and the total 
flow rate of the gas through the system coincided with the experimental data  within 7%. Particularly good 
agreement is observed in the  middle of the operation cycle. 

The study performed allows.the following conclusions to be made. 
�9 The flow in the aspiration system of an internal combustion engine is essentially unsteady and cannot 

be described in a quasisteady formulation. 
�9 Different wave regimes of the flow (compression and rarefaction waves, acoustic waves, etc.) are 

observed in the channels of the aspiration system. These waves can interact with one another. 
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* The opening of aspiration valves is responsible for a significant exhaust of residual gases into the 
channels and the volumetric unit of the aspiration system. 

* The closure of aspiration valves is responsible for the emergence of high-amplitude waves in the 
channels and the volumetric unit of the aspiration system. Additional studies are needed to elucidate the 
reasons for this phenomena. 

�9 Despite the complex wave character of the flow, the proposed numerical model of the aspiration 
system allows a fairly accurate calculation of the basic characteristics of the system. 
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